Configure Red Hat Cluster using VMware, Quorum Disk, GFS2, Openfiler

Configure Red Hat Cluster using VMware, Quorum Disk, GFS2, Openfiler

In this article I will be showing you step by step guide to install and configure Red Hat Cluster using VMware Workstation 10.

You must be familiar with High Availability Cluster and it's Architecture before you start working on the configuration of the Red Hat Cluster.

These are the things which I would be using as per my lab setup:

  • VMware Workstation 10 (any version is fine above 8)
  • CentOS 6.5 - 64 bit (You can use either 32 or 64 bit and also if you use earlier versions, some rpm and packages would differ for any version below 6.0)
  • Openfiler 2.99 - 64 bit
Brief intro of what we are trying to accomplish

  1. Configure a 2 node Red Hat Cluster using CentOS 6.5 (64 bit)
  2. One node will be used for management purpose of cluster with luci using CentOS 6.5 (64 bit)
  3. Openfiler will be used to configure a shared iSCSI storage for the cluster
  4. Configure failver for both the nodes
  5. Configure a Quorum disk with 1 one vote to test the failover
  6. Create a common service GFS2 which will run on any one node of our cluster with failover policy
NOTE: I will not be able to configure fencing related settings as it is not supported on vmware. For more information please visit this site Fence Device and Agent Information for Red Hat Enterprise Linux
IMPORTANT NOTE: In this article I will not be able to explain properly all the terms used, for that you can always refer the Official Guide from Red Hat on Cluster Administration for further clarification

Lab Setup

2 nodes with CentOS 6.5 - 64 bit
Node 1
Hostname: node1.cluster
IP Address: 192.168.1.5

Node 2
Hostname: node2.cluster
IP Address: 192.168.1.6

1 Node for Management Interface with CentOS 6.5 - 64 bit
Node 1
Hostname: node3.mgmt
IP Address: 192.168.1.7
Openfiler
Hostname: of.storage
IP Address: 192.168.1.8 
Before moving to start with the configuration of cluster and cluster nodes let us prepare our openfiler with iSCSI storage.

Login to the web console of your openfiler storage (assuming that you have successfully installed openfiler with sufficient free space for cluster storage)

Here I have written one more article on configuration of openfiler which you can use for reference if you face any issues understanding me here as I will be very brief
Configuring iSCSI storage using openfiler

1. Configure iSCSI Target using Openfiler

Click on Block Management and select the partition where you want to create Physical Volume.

Configure Red Hat Cluster using VMware, Quorum Disk, GFS2, Openfiler

Create a new partition with the below shown options for the available disk. Mention a cylinder value for the partition

Configure Red Hat Cluster using VMware, Quorum Disk, GFS2, Openfiler

Once done you should see a new partition added

Configure Red Hat Cluster using VMware, Quorum Disk, GFS2, Openfiler

Similarly create a new partition for next disk /dev/sdb

Configure Red Hat Cluster using VMware, Quorum Disk, GFS2, Openfiler

Select Physical Volume in the Partition Type

Configure Red Hat Cluster using VMware, Quorum Disk, GFS2, Openfiler

So our one more partition is created as you see below

Configure Red Hat Cluster using VMware, Quorum Disk, GFS2, Openfiler

Configure a Volume Group for both the partition you created

Configure Red Hat Cluster using VMware, Quorum Disk, GFS2, Openfiler

So, we have successfully create a new Volume Group SAN

Configure Red Hat Cluster using VMware, Quorum Disk, GFS2, Openfiler

Next is to create a new Logical Volume. Create 2 Logical Volumes with custom size as per your requirement.

For my case I will create two volumes
1. quorum with size 1400 MB (Quorum disk does not requires disk space more than 1GB)
2. SAN with all the left size which will be used for GFS2 filesystem in our cluster

Configure Red Hat Cluster using VMware, Quorum Disk, GFS2, Openfiler

Configure Red Hat Cluster using VMware, Quorum Disk, GFS2, Openfiler

Start the iSCSI Target services

Configure Red Hat Cluster using VMware, Quorum Disk, GFS2, Openfiler

On the home page of system create a ACL for the subnet which will try to access the openfiler storage. For my case the subnet is 192.168.1.0 so I will add a new entry for the same with relative subnet mask.

Configure Red Hat Cluster using VMware, Quorum Disk, GFS2, Openfiler

Next Add iscsi target for the first disk i.e. quorum volume. You can edit the iscsi target value with custom name as I have done for my case so that it becomes easier for me to understand

Configure Red Hat Cluster using VMware, Quorum Disk, GFS2, Openfiler

Next map the volume to the iSCSI target. For quorum target select quorum partition and click on Map as shown below

Configure Red Hat Cluster using VMware, Quorum Disk, GFS2, Openfiler
Next allow the iSCSI target in the Network ACL section
Configure Red Hat Cluster using VMware, Quorum Disk, GFS2, Openfiler

Do the same steps for SAN volume also as we did for quorum volume above. Edit the target value as shown below

Configure Red Hat Cluster using VMware, Quorum Disk, GFS2, Openfiler

Map the volume to the iSCSI target as shown in the figure below. Be sure to the map the correct volume

Configure Red Hat Cluster using VMware, Quorum Disk, GFS2, Openfiler

Configure Red Hat Cluster using VMware, Quorum Disk, GFS2, Openfiler

Allow the ACL for that particular target in Network ACL section

Configure Red Hat Cluster using VMware, Quorum Disk, GFS2, Openfiler

2. Let us start configuring our Cluster

We are going to use luci also known as Conga for Administering and management purpose for the cluster.

What is Conga?

Conga is an integrated set of software components that provides centralized configuration and management of Red Hat clusters and storage. Conga provides the following major features:

  • One Web interface for managing cluster and storage
  • Automated Deployment of Cluster Data and Supporting Packages
  • Easy Integration with Existing Clusters
  • No Need to Re-Authenticate
  • Integration of Cluster Status and Logs
  • Fine-Grained Control over User Permissions
The primary components in Conga are luci and ricci, which are separately installable. luci is a server that runs on one computer and communicates with multiple clusters and computers viaricci. ricci is an agent that runs on each computer (either a cluster member or a standalone computer) managed by Conga

On node3:
Run the below command to install all the Clustering related packages
[root@node3 ~]# yum groupinstall "High Availability Management" "High Availability"
On node1 and node2:
Install the below given packages to start building your cluster nodes and connect to the iSCSI Targets as we will create in openfiler
[root@node1 ~]# yum groupinstall "iSCSI Storage Client" "High Availability"

[root@node2 ~]# yum groupinstall "iSCSI Storage Client" "High Availability"

3. Add iSCSI targets using iSCSi initiator

Once the Clustering packages are installed let us move to next step to add iSCSi storage in our cluster nodes (Here 192.168.1.8 is the IP f my openfiler)
[root@node1 ~]# iscsiadm -m discovery -t sendtargets -p 192.168.1.8
Starting iscsid:                                           [  OK  ]
192.168.1.8:3260,1 iqn.2006-01.com.openfiler:san
192.168.1.8:3260,1 iqn.2006-01.com.openfiler:quorum As you see as soon as we gave the discovery command with openfiler IP address, the  iSCSi targets got discovered automatically as configured on openfiler

Now restart the iscsi service once again to refresh the settings
[root@node1 ~]# service iscsi restart
Stopping iscsi:                                            [  OK  ]
Starting iscsi:                                            [  OK  ]
Verify the added iSCSI storage on your node1
[root@node1 ~]# fdisk -l

Disk /dev/sdb: 1476 MB, 1476395008 bytes
46 heads, 62 sectors/track, 1011 cylinders
Units = cylinders of 2852 * 512 = 1460224 bytes
Sector size (logical/physical): 512 bytes / 512 bytes
I/O size (minimum/optimal): 512 bytes / 512 bytes
Disk identifier: 0x00000000

Disk /dev/sdc: 11.1 GB, 11106516992 bytes
64 heads, 32 sectors/track, 10592 cylinders
Units = cylinders of 2048 * 512 = 1048576 bytes
Sector size (logical/physical): 512 bytes / 512 bytes
I/O size (minimum/optimal): 512 bytes / 512 bytes
Disk identifier: 0x00000000

Now perform the same steps on node2

[root@node2 ~]# iscsiadm -m discovery -t sendtargets -p 192.168.1.8
192.168.1.8:3260,1 iqn.2006-01.com.openfiler:san
192.168.1.8:3260,1 iqn.2006-01.com.openfiler:quorum
Restart iscsi services
[root@node2 ~]# service iscsi restart
Stopping iscsi:                                            [  OK  ]
Starting iscsi:                                            [  OK  ]
Verify the added iscsi storage as reflected on node1
[root@node2 ~]# fdisk -l

Disk /dev/sdb: 1476 MB, 1476395008 bytes
46 heads, 62 sectors/track, 1011 cylinders
Units = cylinders of 2852 * 512 = 1460224 bytes
Sector size (logical/physical): 512 bytes / 512 bytes
I/O size (minimum/optimal): 512 bytes / 512 bytes
Disk identifier: 0x00000000

Disk /dev/sdc: 11.1 GB, 11106516992 bytes
64 heads, 32 sectors/track, 10592 cylinders
Units = cylinders of 2048 * 512 = 1048576 bytes
Sector size (logical/physical): 512 bytes / 512 bytes
I/O size (minimum/optimal): 512 bytes / 512 bytes
Disk identifier: 0x00000000

4. Configure Quorum disk

You need to do this step on both the nodes.
NOTE: Before you do this step be VERY sure of the partition you use as it should not be used by any one since the below step will destroy all the data in that partition

For me I will use the iSCSI quorum partition which is /dev/sdb
Here we are using label name as "quorum"

NOTE: This label will be used in further steps so remember the name which you use. Also once you run the command on any of one of the node, the same would automatically be reflected on other nodes sharing the same partition.
[root@node1 ~]# mkqdisk -c /dev/sdb -l quorum
mkqdisk v3.0.12.1

Writing new quorum disk label 'quorum' to /dev/sdb.
WARNING: About to destroy all data on /dev/sdb; proceed [N/y] ? y
Warning: Initializing previously initialized partition
Initializing status block for node 1...
Initializing status block for node 2...
Initializing status block for node 3...
Initializing status block for node 4...
Initializing status block for node 5...
Initializing status block for node 6...
Initializing status block for node 7...
Initializing status block for node 8...
Initializing status block for node 9...
Initializing status block for node 10...
Initializing status block for node 11...
Initializing status block for node 12...
Initializing status block for node 13...
Initializing status block for node 14...
Initializing status block for node 15...
Initializing status block for node 16...

5. Format a GFS2 partition

Since we want GFS services to be running on our cluster so let us format the iSCSI san target which we mapped on the cluster nodes i.e. /dev/sdc
Explanation: 
Formatting filesystem: GFS2
Locking Protocol: lock_dlm
Cluster Name: cluster1
FileSystem name: GFS
Journal: 2
Partition: /dev/sdc

Run the below command on any one of the nodes as the same would be reflected on all other nodes for the same partition which in our case is /dev/sdc
[root@node1 ~]# mkfs.gfs2 -p lock_dlm -t cluster1:GFS -j 2 /dev/sdc
This will destroy any data on /dev/sdc.
It appears to contain: Linux GFS2 Filesystem (blocksize 4096, lockproto lock_dlm)

Are you sure you want to proceed? [y/n] y

Device:                    /dev/sdc
Blocksize:                 4096
Device Size                10.34 GB (2711552 blocks)
Filesystem Size:           10.34 GB (2711552 blocks)
Journals:                  2
Resource Groups:           42
Locking Protocol:          "lock_dlm"
Lock Table:                "cluster1:GFS"
UUID:                      2ff81375-31f9-c57d-59d1-7573cdfaff42

For more information on GFS2 partition follow the below link
How to configure GFS2 partition in Red Hat Cluster

6. Assign password to ricci

As explained earlier ricci is the agent which is used by luci to connect to each cluster node. So we need to assign a password to the same. This has to be performed on both node1 and node2
[root@node1 ~]# passwd ricci
Changing password for user ricci.
New password:
BAD PASSWORD: it is based on a dictionary word
BAD PASSWORD: is too simple
Retype new password:
passwd: all authentication tokens updated successfully.
Restart the ricci services to take the changes affect
[root@node1 ~]# /etc/init.d/ricci start
Starting oddjobd:                                          [  OK  ]
generating SSL certificates...  done
Generating NSS database...  done
Starting ricci:                                            [  OK  ]
Make sure the ricci services comes up after reboot
[root@node1 ~]# chkconfig ricci on
[root@node2 ~]# passwd ricci
Changing password for user ricci.
New password:
BAD PASSWORD: it is based on a dictionary word
BAD PASSWORD: is too simple
Retype new password:
passwd: all authentication tokens updated successfully.

[root@node2 ~]# /etc/init.d/ricci start
Starting oddjobd:                                          [  OK  ]
generating SSL certificates...  done
Generating NSS database...  done
Starting ricci:                                            [  OK  ]
[root@node2 ~]# chkconfig ricci on

7. Starting conga services

Since node3 is your management server, start luci services on it using the below command
[root@node3 ~]# /etc/init.d/luci start
Adding following auto-detected host IDs (IP addresses/domain names), corresponding to `node3.example' address, to the configuration of self-managed certificate `/var/lib/luci/etc/cacert.config' (you can change them by editing `/var/lib/luci/etc/cacert.config', removing the generated certificate `/var/lib/luci/certs/host.pem' and restarting luci):         (none suitable found, you can still do it manually as mentioned above)

Generating a 2048 bit RSA private key
writing new private key to '/var/lib/luci/certs/host.pem'
Starting saslauthd:                                        [  OK  ]
Start luci...                                              [  OK  ]
Point your web browser to https://node3.mgmt:8084 (or equivalent) to access luci

8. Accessing luci console

The default login credential will be your node3 username/password i.e.
username: root
password: Your root password
Configure Red Hat Cluster using VMware, Quorum Disk, GFS2, Openfiler

Click on Manage Clusters to create a new cluster

Configure Red Hat Cluster using VMware, Quorum Disk, GFS2, Openfiler

Click on Create

Configure Red Hat Cluster using VMware, Quorum Disk, GFS2, Openfiler

Provide the following details for the clusterCluster name: Cluster1(As provided above)
Node Name: node1.cluster (192.168.1.5) Make sure that hostname is resolvable
                     node2.cluster (192.168.1.6) Make sure that hostname is resolvable
Password: As provided for agent ricci in Step 6
Check Shared storage box as we are using GFS2

Configure Red Hat Cluster using VMware, Quorum Disk, GFS2, Openfiler

Once you click on submit, the nodes will start the procedure to add the nodes (if everything goes correct or else it will throw the error)

Configure Red Hat Cluster using VMware, Quorum Disk, GFS2, Openfiler

Now the nodes are added but they are shown in red color. Let us check the reason behind it. Click on any of the nodes for more details

Configure Red Hat Cluster using VMware, Quorum Disk, GFS2, Openfiler

So the reason looks like most of the services are not running . Let us login to the console and start the services

Configure Red Hat Cluster using VMware, Quorum Disk, GFS2, Openfiler

[root@node1 ~]# /etc/init.d/cman start
Starting cluster:
   Checking if cluster has been disabled at boot...        [  OK  ]
   Checking Network Manager...
Network Manager is either running or configured to run. Please disable it in the cluster.
                                                           [FAILED]

Stopping cluster:
   Leaving fence domain...                                 [  OK  ]
   Stopping gfs_controld...                                [  OK  ]
   Stopping dlm_controld...                                [  OK  ]
   Stopping fenced...                                      [  OK  ]
   Stopping cman...                                        [  OK  ]
   Unloading kernel modules...                             [  OK  ]
   Unmounting configfs...                                  [  OK  ]
IMPORTANT NOTE: If you are planning to configure Red Hat Cluster then make sure NetworkManager service is not running

[root@node1 ~]# service NetworkManager stop
Stopping NetworkManager daemon:                            
[  OK  ]

[root@node1 ~]# chkconfig NetworkManager off


start the cman services
[root@node1 ~]# /etc/init.d/cman start
Starting cluster:
   Checking if cluster has been disabled at boot...        [  OK  ]
   Checking Network Manager...                             [  OK  ]
   Global setup...                                         [  OK  ]
   Loading kernel modules...                               [  OK  ]
   Mounting configfs...                                    [  OK  ]
   Starting cman...                                        [  OK  ]
   Waiting for quorum...                                   [  OK  ]
   Starting fenced...                                      [  OK  ]
   Starting dlm_controld...                                [  OK  ]
   Tuning DLM kernel config...                             [  OK  ]
   Starting gfs_controld...                                [  OK  ]
   Unfencing self...                                       [  OK  ]
   Joining fence domain...                                 [  OK  ]
start clvmd service
[root@node1 ~]# /etc/init.d/clvmd start
Activating VG(s):   2 logical volume(s) in volume group "VolGroup" now active
                                                           [  OK  ]
[root@node1 ~]# chkconfig  clvmd on
Start rgmanager and modclusterd service
[root@node1 ~]# /etc/init.d/rgmanager start
Starting Cluster Service Manager:                          [ OK ]

[root@node1 ~]# chkconfig rgmanager on

[root@node1 ~]# /etc/init.d/modclusterd start
Starting Cluster Module - cluster monitor:

[root@node1 ~]# chkconfig modclusterd on

We need to start all these services on node2 as well
[root@node2 ~]# /etc/init.d/cman start
Starting cluster:
   Checking if cluster has been disabled at boot...        [  OK  ]
   Checking Network Manager...                             [  OK  ]
   Global setup...                                         [  OK  ]
   Loading kernel modules...                               [  OK  ]
   Mounting configfs...                                    [  OK  ]
   Starting cman...                                        [  OK  ]
   Waiting for quorum...                                   [  OK  ]
   Starting fenced...                                      [  OK  ]
   Starting dlm_controld...                                [  OK  ]
   Tuning DLM kernel config...                             [  OK  ]
   Starting gfs_controld...                                [  OK  ]
   Unfencing self...                                       [  OK  ]
   Joining fence domain...                                 [  OK  ]

[root@node2 ~]# chkconfig cman on
[root@node2 ~]# /etc/init.d/clvmd start
Starting clvmd:
Activating VG(s):   2 logical volume(s) in volume group "VolGroup" now active
                                                           [  OK  ]
[root@node2 ~]# /etc/init.d/rgmanager start
Starting Cluster Service Manager:                          [  OK  ]

[root@node2 ~]# chkconfig rgmanager on

[root@
node2 ~]# chkconfig modclusterd on

[root@
node2 ~]# /etc/init.d/modclusterd start
Starting Cluster Module - cluster monitor:
Now once all the services have started, let us refresh the web console and see the changes

Configure Red Hat Cluster using VMware, Quorum Disk, GFS2, Openfiler

So all the services are running and there is no more warning message on either cluster or the nodes

Configure Red Hat Cluster using VMware, Quorum Disk, GFS2, Openfiler

9. Configure Quorum Disk

Click on Configure from the TAB menu as shown below and select QDisk
Fill in the details as shown below
Check the box with "Use a Quorum Disk"
Provide the label name used in above steps while formatting Quorum disk in Step 4
Provide the command to be run to check the quorum status between all the nodes and the interval time
Click on Apply once done

Configure Red Hat Cluster using VMware, Quorum Disk, GFS2, Openfiler

If everything goes fine you should be able to see the below message

Configure Red Hat Cluster using VMware, Quorum Disk, GFS2, Openfiler

10. Configure Failover Domain

Select Failover Domain option from the TAB menu and Add a new Failover Domain

Configure Red Hat Cluster using VMware, Quorum Disk, GFS2, Openfiler
Give a name to your failover domain and follow the setting as shown below
Configure Red Hat Cluster using VMware, Quorum Disk, GFS2, Openfiler

11. Create Resources

Click on Resources TAB from the top menu and select Add

Configure Red Hat Cluster using VMware, Quorum Disk, GFS2, Openfiler

Select GFS2 from the drop down menu and fill in the details
Name: Give any name
Mount Point: Before giving the mount point make sure it exists on both the nodes

Let us create these mount points on node1 and node2
[root@node1 ~]# mkdir /GFS
[root@node2 ~]# mkdir /GFS
Next fill in the device details which we formatted for GFS2 i.e. /dev/sdc
Check the Force Unmount box and click on Submit

Configure Red Hat Cluster using VMware, Quorum Disk, GFS2, Openfiler

12. Create Service Group

Select Service Group TAB from the top menu and click on Add

Configure Red Hat Cluster using VMware, Quorum Disk, GFS2, Openfiler

Give a name to your service
Check the box to automatically start your service
Select the failover which we created in Step 10
Select relocate from the drop down menu for Recovery Policy
Once done click on "Add resource"

Configure Red Hat Cluster using VMware, Quorum Disk, GFS2, Openfiler

You will see the below box on your screen. Select the Resource we created in Step 11.

Configure Red Hat Cluster using VMware, Quorum Disk, GFS2, Openfiler

As soon as you select GFS, all the saved setting under GFS resource will be visible under service group section as shown below. Click on Submit to save the changes

Configure Red Hat Cluster using VMware, Quorum Disk, GFS2, Openfiler

Once you click on submit, refresh the web console and you should be able to see the GFS service running on your cluster on any of the node as shown below

Configure Red Hat Cluster using VMware, Quorum Disk, GFS2, Openfiler
You can verify the same from CLI also

13. Verification

On node1

[root@node1 ~]# clustat
Cluster Status for cluster1 @ Wed Feb 26 00:49:04 2014
Member Status: Quorate

 Member Name                                            ID   Status
 ------ ----                                            ---- ------
 node1.cluster                                           1 Online,  Local, rgmanager
 node2.cluster                                           2 Online,  rgmanager
 /dev/block/8:16                                         0 Online, Quorum Disk

 Service Name                                   State             Owner (Last)                                                 
 ------- ----                                   -----             ----- ------                                                
 service:GFS                                    started           node1.cluster                                                    

So, if GFS is running on node1 then GFS should be mounted on /GFS on node1. Let us verify
[root@node1 ~]# df -h
Filesystem                 Size  Used Avail Use% Mounted on
/dev/mapper/VolGroup-root  8.7G  3.4G  5.0G  41% /
tmpfs                      495M   32M  464M   7% /dev/shm
/dev/sda1                  194M   30M  155M  16% /boot
/dev/sr0                   4.2G  4.2G     0 100% /media/CentOS_6.5_Final
/dev/sdc                    11G  518M  9.9G   5% /GFS

Now let me try to relocate the GFS service on node2
[root@node1 ~]# clusvcadm -r GFS -m node2
'node2' not in membership list
Closest match: 'node2.cluster'
Trying to relocate service:GFS to node2.cluster...Success
service:GFS is now running on node2.cluster
Let us see if the changes are reflected on cluster
[root@node1 ~]# clustat
Cluster Status for cluster1 @ Wed Feb 26 00:50:42 2014
Member Status: Quorate

 Member Name                                                ID   Status
 ------ ----                                                ---- ------
 node1.cluster                                               1 Online, Local, rgmanager
 node2.cluster                                               2 Online, rgmanager
 /dev/block/8:16                                             0 Online, Quorum Disk

 Service Name                                 State                  Owner (Last)                                                     
 ------- ----                                 -----                  ----- ------                                                     
 service:GFS                                 started                 node2.cluster                                                    
Again to reverify on the available partitions
[root@node1 ~]# df -h
Filesystem                 Size  Used Avail Use% Mounted on
/dev/mapper/VolGroup-root  8.7G  3.4G  5.0G  41% /
tmpfs                      495M   26M  470M   6% /dev/shm
/dev/sda1                  194M   30M  155M  16% /boot
/dev/sr0                   4.2G  4.2G     0 100% /media/CentOS_6.5_Final

On node2

[root@node2 ~]# df -h
Filesystem                 Size  Used Avail Use% Mounted on
/dev/mapper/VolGroup-root  8.7G  3.4G  5.0G  41% /
tmpfs                      495M   32M  464M   7% /dev/shm
/dev/sda1                  194M   30M  155M  16% /boot
/dev/sr0                   4.2G  4.2G     0 100% /media/CentOS_6.5_Final
/dev/sdc                    11G  518M  9.9G   5% /GFS

Restarting Cluster Manually

In case you plan to restart your cluster manually then there is a pre-defined order in which you will have to stop and start the services

Stopping Cluster services
On one node only, disable services listed in clustat # clusvcadm -d GFS

Verify that all services in clustat are showing disabled
On each node: # service rgmanager stop
On each node: # service clvmd stop
On each node: # service cman stop
Starting Cluster services
On each node: # service cman start
On each node: # service clvmd start
On each node: # service rgmanager start
Enable the GFS service in any of the node
# clusvcadm -e GFS

27 thoughts on “Configure Red Hat Cluster using VMware, Quorum Disk, GFS2, Openfiler”

  1. Hi..It's really very nice post..I followed all the steps as you told, but facing few problem :

    1. I'm getting two set of Disk on each node, means total two set of "quorum" & "san" disk, total four disk on each node. And that's also unordered way, if quorum showing sdb on node1 then for node2 it's showing sdc like that.

    2. After created quorum disk none of the node is starting due to cman service is bringing up.

    3. Where is server log and Configuration file for Cluster on node3, how can we change the configuration and check log..what's happening in back end.

    Please help to understand those points and clear some doubts.

    Reply
  2. Hello Samim,

    It also happened with me, in that case try to re-discover the iscsi targets and repeat step 3 above a few times. Also restarting the iscsi services on the openfiler will help you.

    Any particular error you are getting for cman service?

    You can configure log using conga. I will try to write an article on the same.

    Thanks
    Deepak

    Reply
  3. Why do you need to write the quorum disk twice? Doesn't the second write just re-write anything that was placed on the disk at time of the node 1's write to the quorum?

    Little confused about this, since it's a shared disk, aren't you just writing data to the quorum on disk 1, then just re-writing all of it over when performing the operation with node 2?

    Thanks.

    Reply
  4. My mistake, the time I had configured this for the first time was a bit new and later forgot to update this article though I had updated the same in my new article.

    But thanks for marking the mistake, I have updated the article and yes the quorum as well as GFS2 partition is formatted only on any one of the cluster node since the partitions are configured on a common shared storage the changes are reflected on all the nodes of the same cluster.

    Reply
  5. nice one , your setup working for me smootly...... thanks for your intiative to prepare this beautifullll work....... billions thanks to you.....................no words to expresss

    Reply
  6. Hi

    I try install "yum groupinstall "High Availability Management" "High Availability"" on node3 but i have bellow error
    "yum:command not found"
    please help me.
    tank you.

    Reply
  7. After starting luci services in node 3 Not able to open(luci console) link. it says issuer certificate is invalid (error code: sec_error_ca_cert_invalid) please helpme through..

    Reply
  8. Open the Firefox browser.
    Type about:config in the search bar and press enter.
    If presented with the warning, “This might void your warranty…”, click the “I’ll be careful, I promise!” button.
    In the Preference Name column, locate the security.use_mozillapkix_verification option.
    Double click on the option to toggle the setting to false. Change false to true.

    Reply
  9. Nice tutorial...

    I have little issue. whenever I reboot one of node then node up with wrong partition detection for GFS partition.
    My correct partition is /dev/sdb but it sometime up with /dev/sdc and my cluster failed to up.

    node1:
    Disk /dev/sdb: 1577 MB, 1577058304 bytes
    49 heads, 62 sectors/track, 1013 cylinders
    Units = cylinders of 3038 * 512 = 1555456 bytes
    Sector size (logical/physical): 512 bytes / 512 bytes
    I/O size (minimum/optimal): 512 bytes / 512 bytes
    Disk identifier: 0x00000000

    Disk /dev/sdc: 21.9 GB, 21911044096 bytes
    64 heads, 32 sectors/track, 20896 cylinders
    Units = cylinders of 2048 * 512 = 1048576 bytes
    Sector size (logical/physical): 512 bytes / 512 bytes
    I/O size (minimum/optimal): 512 bytes / 512 bytes
    Disk identifier: 0x00000000

    node2:
    Disk /dev/sdb: 21.9 GB, 21911044096 bytes
    64 heads, 32 sectors/track, 20896 cylinders
    Units = cylinders of 2048 * 512 = 1048576 bytes
    Sector size (logical/physical): 512 bytes / 512 bytes
    I/O size (minimum/optimal): 512 bytes / 512 bytes
    Disk identifier: 0x00000000

    Disk /dev/sdc: 1577 MB, 1577058304 bytes
    49 heads, 62 sectors/track, 1013 cylinders
    Units = cylinders of 3038 * 512 = 1555456 bytes
    Sector size (logical/physical): 512 bytes / 512 bytes
    I/O size (minimum/optimal): 512 bytes / 512 bytes
    Disk identifier: 0x00000000

    please let me know any modification needed to fix this issue

    Reply
  10. In clustering setup.. You will find /GFS partition in one of your node and only service(here /GFS partition) will switch to other node if node fail to run this service(GFS).
    Like your node1 currently having /GFS partition (service running) and your node rebooted then GFS service should move to your second node (node2)

    Reply
  11. Hi Team,

    after start luci service in node3, uci access console is now working.
    Do i need start more services ?

    [root@node3 Desktop]#
    [root@node3 Desktop]# /etc/init.d/luci restart
    Stop luci... [ OK ]
    Start luci... [ OK ]
    Point your web browser to node3.cluster:8084 (or equivalent) to access luci

    Please help me

    Reply
  12. Hi Team,

    after start luci service in node3, uci access console is not working.
    Do i need start more services ?

    [root@node3 Desktop]#
    [root@node3 Desktop]# /etc/init.d/luci restart
    Stop luci... [ OK ]
    Start luci... [ OK ]
    Point your web browser to node3.cluster:8084 (or equivalent) to access luci

    Please help me

    Reply
  13. Hi,
    Quorum disk is sdb on node1 and the quorum disk is sdc on node2. I have tried "STEP3" several times. I am also getting a couple of disk for "quorum" disk and "shared disk" i.e a total of 4 disks...maybe the 2 interfaces which I am using on the virtual-box is giving this o/p !!!!.
    Though this question has been asked before, but "STEP3" is not working for me. Please help..

    Thanks

    Reply
  14. Hi,
    Quorum disk is sdb on node1 and the quorum disk is sdc on node2. I have tried "STEP3" several times. I am also getting a couple of disk for "quorum" disk and "shared disk" i.e a total of 4 disks...maybe the 2 interfaces which I am using on the virtual-box is giving this o/p !!!!.
    Though this question has been asked before, but "STEP3" is not working for me. Please help..

    Thanks

    Reply
  15. Hi,
    Quorum disk is sdb on node1 and the quorum disk is sdc on node2. I have tried "STEP3" several times. I am also getting a couple of disk for "quorum" disk and "shared disk" i.e a total of 4 disks...maybe the 2 interfaces which I am using on the virtual-box is giving this o/p !!!!.
    Though this question has been asked before, but "STEP3" is not working for me. Please help

    Thanks

    Reply
  16. Hello,
    Thanks for nice tutorial just i wanted to check fencing,
    Could you able to show here how to use fencing in vnware tool with manually testing.

    Reply
  17. i am having problem while formatting the disk with gfs2 format.
    need help
    output:
    yum install rgmanager lvm2-cluster gfs2-utils
    Loaded plugins: product-id, refresh-packagekit, security, subscription-manager
    This system is not registered to Red Hat Subscription Management. You can use subscription-manager to register.
    Setting up Install Process
    Package rgmanager-3.0.12.1-19.el6.x86_64 already installed and latest version
    No package lvm2-cluster available.
    No package gfs2-utils available.
    Nothing to do
    [root@node1 ~]# mkfs.gfs2 -p lock_dlm -t cluster1:GFS -j 2 /dev/sdc
    -bash: mkfs.gfs2: command not found

    even i am unable to install the required packages.

    Reply
  18. hello,

    truly appreciated for your detail instruction, it was really helpful. Just 1 thing, i tried to create the simple resource for IP but it is always in unknown status. Is it about fencing? Cannot make any resource running.

    Thanks,

    Reply
  19. Hi,
    Once again thanks for your nice detailed instructions. I followed it and added few extra stuff to get things work. Not sure about your priority settings is right or any correction is needed. But i put node1 as (1 priority) and node as (2 priority). I didn't configure quorum disk since setup is about to run in a two node cluster. I used ESXi host for fencing and fence_vmware_soap as agent to work as charming. Here is my cluster.conf file and my setup details ...

    OS CentOS: 6.5 with latest HA packages.
    ESXi host trial version.

    ESXi host 192.168.101.137 For fencing
    Node 1 192.168.101.146 running on above ESXi
    Node 2 192.168.101.147 running on above ESXi

    two Shared volume from openfiler . One is for shared LVM which mounts only one node while cluster is running and another one is for GFS same like as LVM LUN. Both will mount where cluster is running in association with http service & VIP. So i added five resources as below.

    1) HA - LVM
    2) Filesystem to mount
    3) Apache service (using script method to start /stop)
    4) VIP
    5) GFS partition

    cluster.conf:

    lvm.conf:
    locking_type = 3
    volume_list = [ "VolGroup", "@node1" ]
    Above line exclude shared LVM not to mount during boot and mount only OS Partition.

    Disabled IP Tables and SELinux for to get things done as earliest 🙂

    This is in my testing LAB and working good. Hope this will helpful for others too...

    Reply

Leave a Comment